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1 For the impatient ...
Guinier fit: radius of gyration

equation: log(I) = g0 + g1 ·Q2

obtain: RG =
√
−3g1

units: RG: 1/Q units

Porod fit: specific surface area of scatterers

equation: I(Q) = p0 ·Q−p1 + Ibkg

obtain: Sv = 0.159× 1012p0/|∆ρ|2

units: Q: Å−1

I: cm−1

Sv: cm−1

p0: cm−1·Å−4

|∆ρ|2: 1020 cm−4 (or 1028 m−4)

obtain: Sm = 0.159× 108p0/|∆ρ|2/ρm

units: Sm: m2·g−1

ρm: g·cm−3

2 Introduction
A brief1 summary of equations useful for basic analysis
of small-angle scattering is presented. The magnitude of

∗http://www.jemian.org/sasequations.pdf
1Also see http://www.jemian.org/pjthesis.pdf.

the reciprocal-space scattering vector2,∣∣∣ ~Q∣∣∣ = Q = (4π/λ) sin θ (1)

where 2θ is the scattering angle3. For a given Q, the
strongest contribution to the observed scattering is likely
due to objects of length scale 2π/Q.

The intensity measured in the experiment, I(Q), is pro-
portional to the absolute intensity, expressed as differen-
tial cross-section per unit sample volume per unit solid-
angle (dΣ/dΩ(Q)),

I(Q) = I0 Ω t Ts
dΣ
dΩ

(Q), (2)

where I0 is the apparent source intensity, Ω is the solid
angle subtended by the detector from the sample, t is the
sample thickness, and Ts is the sample transmission. The
scattering is assumed to be coherent and also assumed
such that either a single scattering event occurs within the
sample or none occurs. Simplifications of Eq. 3 (below)
exist for two limiting cases of scattering vector (low and
high Q SAS regimes). It is necessary to define first some
terms and we shall start with the intensity of small-angle
scattering.

3 Scattered Intensity
dΣ/dΩ(Q) is an intensive property; it is not dependent
on the physical dimensions or amount of the sample. It is
described1–5, 8 as the Fourier transform of the local scatter-
ing length density distribution, ρ(~r), where ~r is a position
vector within the sample,

dΣ
dΩ

( ~Q) = V −1
s

∣∣∣∣∫
Vs

ρ(~r) e−i ~Q·~r d3~r

∣∣∣∣2, (3)

and the integral is over the sample volume, Vs. If ρ(~r) is
constant over all ~r, then dΣ/dΩ will be zero, thus only

2A variety of variables are used, depending on the text, synonymous
with Q, such as h (used by Guinier and others) or k. Often s = Q/2π
is used.

3Some texts define the scattering angle as θ and thus Eq. 1 becomes
Q = (4π/λ) sin(θ/2). One must be careful to determine which defini-
tion is in use for a given presentation.
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in the changes of the scattering length density, ∆ρ(~r), be-
tween a scatterer and its surroundings are involved. For
scattering from finely-divided solids, the scattering can be
interpreted in terms of a particle size distribution. Lord
Rayleigh6, 7 has described the scattering from a single ho-
mogeneous particle of radius r and volume Vp(r) as

dΣ
dΩ

(Q, r) = V −1
s |∆ρ(r)|2 |Vp(r) Fp(Q, r)|2 (4)

where Vs is the volume of the sample, |∆ρ(r)|2 is the
squared difference in scattering length densities between
the scatterer of radius r and its average surroundings,
Vp(r) is the volume of a scatterer of radius r, and Fp(Q, r)
is a dimensionless form factor for the particle that de-
scribes the amplitude of scattering from a particle of a
specific morphology (shape and orientation). The form
factor is

Fp(Q, r) = Fp( ~Q,~r) = V −1
p

∫
Vp

e−i ~Q·~r d3~r. (5)

4 Guinier Fit: Q · r ≤∼ 1.5

The Guinier region3 for identical, randomly-oriented,
non-interacting particles, applies for Q · r ≤∼ 1.5.4 In
this regime, Guinier has approximated Eq. 3 by

lim
Q→0

dΣ
dΩ

(Q) = Nv |∆ρ|2V 2
p exp

[
−1

3
(QRG)2

]
. (6)

Nv is the number of particles per unit volume, Vp(r) is
the particle volume, and RG is the radius of gyration of
the scatterer.

Rearranging terms, one fits data to the Guinier approx-
imation by charting log(I) vs. Q2 and fitting a straight
line,

log(I) = g0 + g1 ·Q2, (7)

where the constant term (g0) is proportional to the concen-
tration of scatterers (for constant size of scatterers) and the
slope (g1) reveals the radius of gyration:

RG =
√
−3g1, (8)

and is in 1/Q units (typically Å or nm).
Strictly speaking, the Guinier relation holds for

QMAX · RG ≤ 1.2 where RG is the radius of gyration
determined from the slope of a log(I) vs. Q2 fit for scat-
terers of any arbitrary shape and QMAX is the largest Q
value included in the determination of RG. (If the scat-
terers are spherical, then this constraint can be relaxed to
Q · RG ≤ 1.8.) Note that Eq. 6 is derived from a Taylor-
series expansion in Q of Eq. 2, dropping odd-order terms.

If there is noticeable curvature in the chart of log(I) vs.
Q2, then clearly, Eq. 6 will not apply.

If SAS data are on an absolute scale (of dΣ
dΩ (Q)), then it

may be possible to derive the concentration of scatterers.
For spherical scatterers, the radius of scatterer is

RS =

√
5
3
·RG. (9)

Thus, the scatterer volume

Vp =
4
3
πr3. (10)

and the concentration of scatterers (Nv is the number of
scatterers per unit sample volume) is

Nv =
exp (g0)
|∆ρ|2V 2

p

. (11)

When I(Q) (and thus eg0) is expressed in cm−1, |∆ρ|2 in
1020 cm−4 (or 1028 m−4), and Vp in Å3, then

Nv = 1028 · exp (g0)
|∆ρ|2V 2

p

. (12)

Expressed in terms of RG (in Å−1) for known spherical
scatterers,

Nv = 1.231× 1026 · exp (g0)
|∆ρ|2R6

G

. (13)

5 Porod Fit: Q · r >> 1

The other limiting case is the Porod region, in the tail of
the SAS curve, for Q · r > 10. The Porod region provides
information about the average surface area per unit vol-
ume of sample, Sv , where the average is weighted towards
the smaller particles if there is a distribution of sizes.

lim
Q→∞

dΣ
dΩ

(Q) = 2π SV |∆ρ|2 Q−4. (14)

Sv is the total scattering surface area per unit volume of
sample irradiated by the beam and is determined from the
slope of a plot of log(dΣ/dΩ) versus log(Q) or from the
intercept of a plot of Q4dΣ/dΩ vs. Q4. The slope of the
latter plot is often interpreted as the experimental back-
ground. In cameras with perfect collimation (i.e., pinhole
geometry), the scattering is proportional to Q−4 whereas
for slit-collimation cameras, the scattering is proportional
to Q−3.

There are (at least) two ways of fitting a Porod line to
SAS data. In either case, one should be careful about the
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contribution of a flat background, Ibkg , to the determina-
tion of the fit. Generally, fit I(Q) vs. Q according to

I(Q) = p0 ·Q−p1 + Ibkg. (15)

The exponent p1 should be very close to 44 or the validity
in using Eq. 14 to determine Sv is compromised. More
simply, one charts I(Q) vs. Q and fits a straight line

I(Q) = p0 ·Q−p1 . (16)

Again, p1 ∼ 4 must be assured. However, presence of
Ibkg can complicate use of Eq. 16.

Specific surface area of scatterers (Sv , the total surface
area of scatterers per unit volume of sample) can be deter-
mined from p0 if the data are on an absolute scale,

Sv =
p0

2π |∆ρ|2
. (17)

When, as above, I(Q) is in units of cm−1, Q in Å−1, and
|∆ρ|2 in 1020 cm−4 (or 1028 m−4), then (noting 1/2π '
0.159)

Sv = 0.159× 1012 p0

|∆ρ|2
. (18)

Often, Sm (the total surface area of scatterers per unit
mass of sample) is desired (where Sm = Sv/ρm):

Sm = 0.159× 108 p0

|∆ρ|2 ρm

. (19)

and ρm is the mass density of the sample in g·cm−3.

6 Scattering length density and con-
trast

When absolute intensities are available, one can use the
previous equations to be quantitative about the amount or
concentration of scatterers present. To harvest this addi-
tional information, it is necessary to describe the compo-
sition of the scatterers and their average surroundings. If
intensities are on an arbitrary scale, then calculations of
scattering length density and contrast are not generally
useful.

The scattering length density is the total scattering
length b of a substance per unit volume V and is calcu-
lated from the composition of the substance. In general,
the density of the scattering entity,

ρ =
∑

i

cibi (20)

4For slit-smeared intensity, I = I0 Q−3 + Ibkg thus p1 should be
very close to 3.

where ci is the concentration (per unit volume) and scat-
tering length, bi, of component i in the sample, respec-
tively, and the sum is over all components.

From Eq. 4, the intensity of SAS is proportional to the
squared difference between the scattering length density
of a scatterer, ρs, and that of average surroundings, ρm.
This term, |∆ρ|2 = |ρs − ρm|2, is called the scattering
contrast5. Thus,

|∆ρ|2 =

∣∣∣∣∣∑
i

∆cibi

∣∣∣∣∣
2

, (21)

where ∆ci is the difference in concentration of component
i between the scatterer and its average surroundings.

In the case of neutrons, one consults tables of bi, which
are different for each isotope.4 The X-ray scattering
length density, ρe− , (where the subscript e− signifies the
effective density of electrons) requires further explanation.
For X-ray energies near an electron binding energy, this
effective density will decrease. This variation is described
by

f = f0 + f ′Z(E) + if ′′Z(E), (22)

where f0 ∼ Z in the small-angle regime, Z is the atomic
number, and f ′(E) and f ′′(E) are the energy-dependent
corrections6 to the atomic scattering factor. Consequently,
bi is the effective scattering length of the electrons. On
average, the scattering length of a single electron is its
classical (Thomson) radius,

re− =
e2

4πε0mc2
, (23)

which is approximately 2.818 fm. The total effective scat-
tering length of electrons in a given atom is given as

b = (re−)f. (24)

By summation over all of the atoms in the sample, where
Z is the atomic number,

ρe− = (re−)
∑
Z

cZ fZ . (25)

Thus, Eq. 21 for X-rays:

|∆ρe− |
2 =

∣∣∣∣∣(re−)
∑
Z

∆cZ [Z + f ′Z(E) + if ′′Z(E)]

∣∣∣∣∣
2

.

(26)
Due to the complex nature of the atomic scattering fac-

tor, fZ , the scattering length density for X-rays, ρe− , is
also a complex number. The same argument may also be

5Some texts define the scattering contrast as the difference between
scattering lengths, ∆ρ = ρs − ρm. Again, one must be careful which
definition is in use.

6also known as anomalous dispersion corrections
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made in the case of neutrons where bi is complex for some
isotopes.

Often, SANS (neutron) scattering length densities are
expressed in terms of cm/cm3, or more simply cm−2.
Typical dimensions are of order 1010-1011 cm−2. For
the scattering contrast (|∆ρe− |

2), typical values are in the
range of 1020-1022 cm−4. (Another common unit for ex-
pressing cross-section in neutron scattering is the barn
where 1 barn = 10−24 cm−2 but this is not commonly
used in SANS.)

In X-ray scattering (SAXS), the electron is principally
responsible for the scattering. Again, scattering length
densities are often represented in terms of cm−1 with typ-
ical values of order 1010-1011 cm−2 (note similarity to
SANS). Thus, typical contrasts are in the range of 1020-
1022 cm−4.

When SI units are desired or required, the most com-
mon unit (consistent with the preceding paragraphs) ex-
pressed contrast in the range of 1028-1030 m−4.

Another set of units also used in SAXS are e−·Å−3 and
these are easy to express and typeset since they often do
not require massive powers of ten. This set of units tells
home many effective electrons are scattering in a given
volume of sample. Using the classical electron radius
(Eq. 23) to compute the cross-sectional area of an electron
(2πr2

e− ), one can convert to cm−4 = 4.990×1023 e−·Å−3

(or for SI: m−4 = 4.990× 1031 e−·Å−3).
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